Module Bigarray
Contents
Instructions: Use this module in your project
In the IDE (CLion, Visual Studio Code, Xcode, etc.) you use for your DkSDK project:
Add the following to your project's
dependencies/CMakeLists.txt
:DkSDKProject_DeclareAvailable(ocaml CONSTRAINT "= 4.14.0" FINDLIBS str unix runtime_events threads dynlink) DkSDKProject_MakeAvailable(ocaml)
Add the
Findlib::ocaml
library to any desired targets insrc/*/CMakeLists.txt
:target_link_libraries(YourPackage_YourLibraryName # ... existing libraries, if any ... Findlib::ocaml)
Click your IDE's
Build
button
Not using DkSDK?
FIRST, do one or all of the following:
Run:
opam install ocaml.4.14.0
Edit your
dune-project
and add:(package (name YourExistingPackage) (depends ; ... existing dependenices ... (ocaml (>= 4.14.0))))
Then run:
dune build *.opam # if this fails, run: dune build
Edit your
<package>.opam
file and add:depends: [ # ... existing dependencies ... "ocaml" {>= "4.14.0"} ]
Then run:
opam install . --deps-only
FINALLY, add the library to any desired
(library)
and/or (executable)
targets in your **/dune
files:
(library
(name YourLibrary)
; ... existing library options ...
(libraries
; ... existing libraries ...
))
(executable
(name YourExecutable)
; ... existing executable options ...
(libraries
; ... existing libraries ...
))
include
module
type
of
struct
include
Stdlib.Bigarray
end
Element kinds
Bigarrays can contain elements of the following kinds:
- IEEE single precision (32 bits) floating-point numbers
(
Bigarray.float32_elt
), - IEEE double precision (64 bits) floating-point numbers
(
Bigarray.float64_elt
), - IEEE single precision (2 * 32 bits) floating-point complex numbers
(
Bigarray.complex32_elt
), - IEEE double precision (2 * 64 bits) floating-point complex numbers
(
Bigarray.complex64_elt
), - 8-bit integers (signed or unsigned)
(
Bigarray.int8_signed_elt
orBigarray.int8_unsigned_elt
), - 16-bit integers (signed or unsigned)
(
Bigarray.int16_signed_elt
orBigarray.int16_unsigned_elt
), - OCaml integers (signed, 31 bits on 32-bit architectures, 63 bits on
64-bit architectures) (
Bigarray.int_elt
), - 32-bit signed integers (
Bigarray.int32_elt
), - 64-bit signed integers (
Bigarray.int64_elt
), - platform-native signed integers (32 bits on 32-bit architectures, 64
bits on 64-bit architectures)
(
Bigarray.nativeint_elt
).
Each element kind is represented at the type level by one of the *_elt
types defined below (defined with a single constructor instead of
abstract types for technical injectivity reasons).
- since 4.07.0 Moved from otherlibs to stdlib.
type
float32_elt`` =
Stdlib.Bigarray.float32_elt
=
|
Float32_elt
type
float64_elt`` =
Stdlib.Bigarray.float64_elt
=
|
Float64_elt
type
int8_signed_elt`` =
Stdlib.Bigarray.int8_signed_elt
=
|
Int8_signed_elt
type
int8_unsigned_elt`` =
Stdlib.Bigarray.int8_unsigned_elt
=
|
Int8_unsigned_elt
type
int16_signed_elt`` =
Stdlib.Bigarray.int16_signed_elt
=
|
Int16_signed_elt
type
int16_unsigned_elt`` =
Stdlib.Bigarray.int16_unsigned_elt
=
|
Int16_unsigned_elt
type
int32_elt`` =
Stdlib.Bigarray.int32_elt
=
|
Int32_elt
type
int64_elt`` =
Stdlib.Bigarray.int64_elt
=
|
Int64_elt
type
int_elt`` =
Stdlib.Bigarray.int_elt
=
|
Int_elt
type
nativeint_elt`` =
Stdlib.Bigarray.nativeint_elt
=
|
Nativeint_elt
type
complex32_elt`` =
Stdlib.Bigarray.complex32_elt
=
|
Complex32_elt
type
complex64_elt`` =
Stdlib.Bigarray.complex64_elt
=
|
Complex64_elt
type
``('a, 'b) kind`` = ``(
'a
,
'b
)``
Stdlib.Bigarray.kind
=
|
Float32
: ``(float,
float32_elt
)``
kind
|
Float64
: ``(float,
float64_elt
)``
kind
|
Int8_signed
: ``(int,
int8_signed_elt
)``
kind
|
Int8_unsigned
: ``(int,
int8_unsigned_elt
)``
kind
|
Int16_signed
: ``(int,
int16_signed_elt
)``
kind
|
Int16_unsigned
: ``(int,
int16_unsigned_elt
)``
kind
|
Int32
: ``(int32,
int32_elt
)``
kind
|
Int64
: ``(int64,
int64_elt
)``
kind
|
Int
: ``(int,
int_elt
)``
kind
|
Nativeint
: ``(nativeint,
nativeint_elt
)``
kind
|
Complex32
: ``(
Stdlib.Complex.t
,
complex32_elt
)``
kind
|
Complex64
: ``(
Stdlib.Complex.t
,
complex64_elt
)``
kind
|
Char
: ``(char,
int8_unsigned_elt
)``
kind
To each element kind is associated an OCaml type, which is the type of
OCaml values that can be stored in the Bigarray or read back from it.
This type is not necessarily the same as the type of the array elements
proper: for instance, a Bigarray whose elements are of kind
float32_elt
contains 32-bit single precision floats, but reading or
writing one of its elements from OCaml uses the OCaml type float
,
which is 64-bit double precision floats.
The GADT type ('a, 'b) kind
captures this association of an OCaml type
'a
for values read or written in the Bigarray, and of an element kind
'b
which represents the actual contents of the Bigarray. Its
constructors list all possible associations of OCaml types with element
kinds, and are re-exported below for backward-compatibility reasons.
Using a generalized algebraic datatype (GADT) here allows writing well-typed polymorphic functions whose return type depend on the argument type, such as:
let zero : type a b. (a, b) kind -> a = function
| Float32 -> 0.0 | Complex32 -> Complex.zero
| Float64 -> 0.0 | Complex64 -> Complex.zero
| Int8_signed -> 0 | Int8_unsigned -> 0
| Int16_signed -> 0 | Int16_unsigned -> 0
| Int32 -> 0l | Int64 -> 0L
| Int -> 0 | Nativeint -> 0n
| Char -> '\000'
val
float32 : ``(float,
float32_elt
)``
kind
See Bigarray.char
.
val
float64 : ``(float,
float64_elt
)``
kind
See Bigarray.char
.
val
complex32 : ``(
Stdlib.Complex.t
,
complex32_elt
)``
kind
See Bigarray.char
.
val
complex64 : ``(
Stdlib.Complex.t
,
complex64_elt
)``
kind
See Bigarray.char
.
val
int8_signed : ``(int,
int8_signed_elt
)``
kind
See Bigarray.char
.
val
int8_unsigned : ``(int,
int8_unsigned_elt
)``
kind
See Bigarray.char
.
val
int16_signed : ``(int,
int16_signed_elt
)``
kind
See Bigarray.char
.
val
int16_unsigned : ``(int,
int16_unsigned_elt
)``
kind
See Bigarray.char
.
See Bigarray.char
.
See Bigarray.char
.
See Bigarray.char
.
val
nativeint : ``(nativeint,
nativeint_elt
)``
kind
See Bigarray.char
.
val
char : ``(char,
int8_unsigned_elt
)``
kind
As shown by the types of the values above, Bigarrays of kind
float32_elt
and float64_elt
are accessed using the OCaml type
float
. Bigarrays of complex kinds complex32_elt
, complex64_elt
are
accessed with the OCaml type Complex
.t. Bigarrays of integer kinds are
accessed using the smallest OCaml integer type large enough to represent
the array elements: int
for 8- and 16-bit integer Bigarrays, as well
as OCaml-integer Bigarrays; int32
for 32-bit integer Bigarrays;
int64
for 64-bit integer Bigarrays; and nativeint
for
platform-native integer Bigarrays. Finally, Bigarrays of kind
int8_unsigned_elt
can also be accessed as arrays of characters instead
of arrays of small integers, by using the kind value char
instead of
int8_unsigned
.
val
kind_size_in_bytes : ``(
'a
,
'b
)``
kind
->
int
kind_size_in_bytes k
is the number of bytes used to store an element
of type k
.
- since 4.03.0
Array layouts
type
c_layout`` =
Stdlib.Bigarray.c_layout
=
|
C_layout_typ
type
fortran_layout`` =
Stdlib.Bigarray.fortran_layout
=
|
Fortran_layout_typ
To facilitate interoperability with existing C and Fortran code, this library supports two different memory layouts for Bigarrays, one compatible with the C conventions, the other compatible with the Fortran conventions.
In the C-style layout, array indices start at 0, and multi-dimensional
arrays are laid out in row-major format. That is, for a two-dimensional
array, all elements of row 0 are contiguous in memory, followed by all
elements of row 1, etc. In other terms, the array elements at (x,y)
and (x, y+1)
are adjacent in memory.
In the Fortran-style layout, array indices start at 1, and
multi-dimensional arrays are laid out in column-major format. That is,
for a two-dimensional array, all elements of column 0 are contiguous in
memory, followed by all elements of column 1, etc. In other terms, the
array elements at (x,y)
and (x+1, y)
are adjacent in memory.
Each layout style is identified at the type level by the phantom types
Bigarray.c_layout
and
Bigarray.fortran_layout
respectively.
Supported layouts
The GADT type 'a layout
represents one of the two supported memory
layouts: C-style or Fortran-style. Its constructors are re-exported as
values below for backward-compatibility reasons.
type
``'a layout`` =
'a
Stdlib.Bigarray.layout
=
|
C_layout
:
c_layout
layout
|
Fortran_layout
:
fortran_layout
layout
val
fortran_layout :
fortran_layout
layout
\Generic arrays (of arbitrarily many dimensions)
module
Genarray`` =
Stdlib.Bigarray.Genarray
Zero-dimensional arrays
module
Array0`` =
Stdlib.Bigarray.Array0
Zero-dimensional arrays. The Array0
structure provides operations
similar to those of Bigarray.Genarray
, but
specialized to the case of zero-dimensional arrays that only contain a
single scalar value. Statically knowing the number of dimensions of the
array allows faster operations, and more precise static type-checking.
One-dimensional arrays
module
Array1`` =
Stdlib.Bigarray.Array1
One-dimensional arrays. The Array1
structure provides operations
similar to those of Bigarray.Genarray
, but
specialized to the case of one-dimensional arrays. (The
Array2
and Array3
structures below provide operations specialized for two- and
three-dimensional arrays.) Statically knowing the number of dimensions
of the array allows faster operations, and more precise static
type-checking.
Two-dimensional arrays
module
Array2`` =
Stdlib.Bigarray.Array2
Two-dimensional arrays. The Array2
structure provides operations
similar to those of Bigarray.Genarray
, but
specialized to the case of two-dimensional arrays.
Three-dimensional arrays
module
Array3`` =
Stdlib.Bigarray.Array3
Three-dimensional arrays. The Array3
structure provides operations
similar to those of Bigarray.Genarray
, but
specialized to the case of three-dimensional arrays.
\Coercions between generic Bigarrays and fixed-dimension Bigarrays
val
genarray_of_array0 : ``(
'a
,
'b
,
'c
)``
Array0.t
->
``(
'a
,
'b
,
'c
)``
Genarray.t
Return the generic Bigarray corresponding to the given zero-dimensional Bigarray.
- since 4.05.0
val
genarray_of_array1 : ``(
'a
,
'b
,
'c
)``
Array1.t
->
``(
'a
,
'b
,
'c
)``
Genarray.t
Return the generic Bigarray corresponding to the given one-dimensional Bigarray.
val
genarray_of_array2 : ``(
'a
,
'b
,
'c
)``
Array2.t
->
``(
'a
,
'b
,
'c
)``
Genarray.t
Return the generic Bigarray corresponding to the given two-dimensional Bigarray.
val
genarray_of_array3 : ``(
'a
,
'b
,
'c
)``
Array3.t
->
``(
'a
,
'b
,
'c
)``
Genarray.t
Return the generic Bigarray corresponding to the given three-dimensional Bigarray.
val
array0_of_genarray : ``(
'a
,
'b
,
'c
)``
Genarray.t
->
``(
'a
,
'b
,
'c
)``
Array0.t
Return the zero-dimensional Bigarray corresponding to the given generic Bigarray.
-
raises Invalid_argument
if the generic Bigarray does not have exactly zero dimension.
-
since 4.05.0
val
array1_of_genarray : ``(
'a
,
'b
,
'c
)``
Genarray.t
->
``(
'a
,
'b
,
'c
)``
Array1.t
Return the one-dimensional Bigarray corresponding to the given generic Bigarray.
-
raises Invalid_argument
if the generic Bigarray does not have exactly one dimension.
val
array2_of_genarray : ``(
'a
,
'b
,
'c
)``
Genarray.t
->
``(
'a
,
'b
,
'c
)``
Array2.t
Return the two-dimensional Bigarray corresponding to the given generic Bigarray.
-
raises Invalid_argument
if the generic Bigarray does not have exactly two dimensions.
val
array3_of_genarray : ``(
'a
,
'b
,
'c
)``
Genarray.t
->
``(
'a
,
'b
,
'c
)``
Array3.t
Return the three-dimensional Bigarray corresponding to the given generic Bigarray.
-
raises Invalid_argument
if the generic Bigarray does not have exactly three dimensions.
Re-shaping Bigarrays
val
reshape : ``(
'a
,
'b
,
'c
)``
Genarray.t
->
``int array``
->
``(
'a
,
'b
,
'c
)``
Genarray.t
reshape b [|d1;...;dN|]
converts the Bigarray b
to a N
-dimensional
array of dimensions d1
...dN
. The returned array and the original
array b
share their data and have the same layout. For instance,
assuming that b
is a one-dimensional array of dimension 12,
reshape b [|3;4|]
returns a two-dimensional array b'
of dimensions 3
and 4. If b
has C layout, the element (x,y)
of b'
corresponds to
the element x * 3 + y
of b
. If b
has Fortran layout, the element
(x,y)
of b'
corresponds to the element x + (y - 1) * 4
of b
. The
returned Bigarray must have exactly the same number of elements as the
original Bigarray b
. That is, the product of the dimensions of b
must be equal to i1 * ... * iN
. Otherwise, Invalid_argument
is
raised.
val
reshape_0 : ``(
'a
,
'b
,
'c
)``
Genarray.t
->
``(
'a
,
'b
,
'c
)``
Array0.t
Specialized version of Bigarray.reshape
for reshaping
to zero-dimensional arrays.
- since 4.05.0
val
reshape_1 : ``(
'a
,
'b
,
'c
)``
Genarray.t
->
``int
->
``(
'a
,
'b
,
'c
)``
Array1.t
Specialized version of Bigarray.reshape
for reshaping
to one-dimensional arrays.
val
reshape_2 : ``(
'a
,
'b
,
'c
)``
Genarray.t
->
``int
->
``int
->
``(
'a
,
'b
,
'c
)``
Array2.t
Specialized version of Bigarray.reshape
for reshaping
to two-dimensional arrays.
val
reshape_3 : ``(
'a
,
'b
,
'c
)``
Genarray.t
->
``int
->
``int
->
``int
->
``(
'a
,
'b
,
'c
)``
Array3.t
Specialized version of Bigarray.reshape
for reshaping
to three-dimensional arrays.