Module Stdlib.Bigarray
Contents
Instructions: Use this module in your project
In the IDE (CLion, Visual Studio Code, Xcode, etc.) you use for your DkSDK project:
Add the following to your project's
dependencies/CMakeLists.txt:DkSDKProject_DeclareAvailable(ocaml CONSTRAINT "= 4.14.0" FINDLIBS str unix runtime_events threads dynlink) DkSDKProject_MakeAvailable(ocaml)Add the
Findlib::ocamllibrary to any desired targets insrc/*/CMakeLists.txt:target_link_libraries(YourPackage_YourLibraryName # ... existing libraries, if any ... Findlib::ocaml)Click your IDE's
Buildbutton
Not using DkSDK?
FIRST, do one or all of the following:
Run:
opam install ocaml.4.14.0Edit your
dune-projectand add:(package (name YourExistingPackage) (depends ; ... existing dependenices ... (ocaml (>= 4.14.0))))Then run:
dune build *.opam # if this fails, run: dune buildEdit your
<package>.opamfile and add:depends: [ # ... existing dependencies ... "ocaml" {>= "4.14.0"} ]Then run:
opam install . --deps-only
FINALLY, add the library to any desired (library)and/or (executable) targets in your **/dune files:
(library
(name YourLibrary)
; ... existing library options ...
(libraries
; ... existing libraries ...
))
(executable
(name YourExecutable)
; ... existing executable options ...
(libraries
; ... existing libraries ...
))Element kinds
Bigarrays can contain elements of the following kinds:
- IEEE single precision (32 bits) floating-point numbers
(
Bigarray.float32_elt), - IEEE double precision (64 bits) floating-point numbers
(
Bigarray.float64_elt), - IEEE single precision (2 * 32 bits) floating-point complex numbers
(
Bigarray.complex32_elt), - IEEE double precision (2 * 64 bits) floating-point complex numbers
(
Bigarray.complex64_elt), - 8-bit integers (signed or unsigned)
(
Bigarray.int8_signed_eltorBigarray.int8_unsigned_elt), - 16-bit integers (signed or unsigned)
(
Bigarray.int16_signed_eltorBigarray.int16_unsigned_elt), - OCaml integers (signed, 31 bits on 32-bit architectures, 63 bits on
64-bit architectures) (
Bigarray.int_elt), - 32-bit signed integers (
Bigarray.int32_elt), - 64-bit signed integers (
Bigarray.int64_elt), - platform-native signed integers (32 bits on 32-bit architectures, 64
bits on 64-bit architectures)
(
Bigarray.nativeint_elt).
Each element kind is represented at the type level by one of the *_elt
types defined below (defined with a single constructor instead of
abstract types for technical injectivity reasons).
- since 4.07.0 Moved from otherlibs to stdlib.
typefloat32_elt`` =
|Float32_elt
typefloat64_elt`` =
|Float64_elt
typeint8_signed_elt`` =
|Int8_signed_elt
typeint8_unsigned_elt`` =
|Int8_unsigned_elt
typeint16_signed_elt`` =
|Int16_signed_elt
typeint16_unsigned_elt`` =
|Int16_unsigned_elt
typeint32_elt`` =
|Int32_elt
typeint64_elt`` =
|Int64_elt
typeint_elt`` =
|Int_elt
typenativeint_elt`` =
|Nativeint_elt
typecomplex32_elt`` =
|Complex32_elt
typecomplex64_elt`` =
|Complex64_elt
type``('a, 'b) kind`` =
|Float32: ``(float,float32_elt)``kind
|Float64: ``(float,float64_elt)``kind
|Int8_signed: ``(int,int8_signed_elt)``kind
|Int8_unsigned: ``(int,int8_unsigned_elt)``kind
|Int16_signed: ``(int,int16_signed_elt)``kind
|Int16_unsigned: ``(int,int16_unsigned_elt)``kind
|Int32: ``(int32,int32_elt)``kind
|Int64: ``(int64,int64_elt)``kind
|Int: ``(int,int_elt)``kind
|Nativeint: ``(nativeint,nativeint_elt)``kind
|Complex32: ``(Complex.t,complex32_elt)``kind
|Complex64: ``(Complex.t,complex64_elt)``kind
|Char: ``(char,int8_unsigned_elt)``kind
To each element kind is associated an OCaml type, which is the type of
OCaml values that can be stored in the Bigarray or read back from it.
This type is not necessarily the same as the type of the array elements
proper: for instance, a Bigarray whose elements are of kind
float32_elt contains 32-bit single precision floats, but reading or
writing one of its elements from OCaml uses the OCaml type float,
which is 64-bit double precision floats.
The GADT type ('a, 'b) kind captures this association of an OCaml type
'a for values read or written in the Bigarray, and of an element kind
'b which represents the actual contents of the Bigarray. Its
constructors list all possible associations of OCaml types with element
kinds, and are re-exported below for backward-compatibility reasons.
Using a generalized algebraic datatype (GADT) here allows writing well-typed polymorphic functions whose return type depend on the argument type, such as:
let zero : type a b. (a, b) kind -> a = function
| Float32 -> 0.0 | Complex32 -> Complex.zero
| Float64 -> 0.0 | Complex64 -> Complex.zero
| Int8_signed -> 0 | Int8_unsigned -> 0
| Int16_signed -> 0 | Int16_unsigned -> 0
| Int32 -> 0l | Int64 -> 0L
| Int -> 0 | Nativeint -> 0n
| Char -> '\000'valfloat32 : ``(float,float32_elt)``kind
See Bigarray.char.
valfloat64 : ``(float,float64_elt)``kind
See Bigarray.char.
valcomplex32 : ``(Complex.t,complex32_elt)``kind
See Bigarray.char.
valcomplex64 : ``(Complex.t,complex64_elt)``kind
See Bigarray.char.
valint8_signed : ``(int,int8_signed_elt)``kind
See Bigarray.char.
valint8_unsigned : ``(int,int8_unsigned_elt)``kind
See Bigarray.char.
valint16_signed : ``(int,int16_signed_elt)``kind
See Bigarray.char.
valint16_unsigned : ``(int,int16_unsigned_elt)``kind
See Bigarray.char.
See Bigarray.char.
See Bigarray.char.
See Bigarray.char.
valnativeint : ``(nativeint,nativeint_elt)``kind
See Bigarray.char.
valchar : ``(char,int8_unsigned_elt)``kind
As shown by the types of the values above, Bigarrays of kind
float32_elt and float64_elt are accessed using the OCaml type
float. Bigarrays of complex kinds complex32_elt, complex64_elt are
accessed with the OCaml type Complex.t.
Bigarrays of integer kinds are accessed using the smallest OCaml integer
type large enough to represent the array elements: int for 8- and
16-bit integer Bigarrays, as well as OCaml-integer Bigarrays; int32
for 32-bit integer Bigarrays; int64 for 64-bit integer Bigarrays; and
nativeint for platform-native integer Bigarrays. Finally, Bigarrays of
kind int8_unsigned_elt can also be accessed as arrays of characters
instead of arrays of small integers, by using the kind value char
instead of int8_unsigned.
valkind_size_in_bytes : ``('a,'b)``kind->int
kind_size_in_bytes k is the number of bytes used to store an element
of type k.
- since 4.03.0
Array layouts
typec_layout`` =
|C_layout_typ
typefortran_layout`` =
|Fortran_layout_typ
To facilitate interoperability with existing C and Fortran code, this library supports two different memory layouts for Bigarrays, one compatible with the C conventions, the other compatible with the Fortran conventions.
In the C-style layout, array indices start at 0, and multi-dimensional
arrays are laid out in row-major format. That is, for a two-dimensional
array, all elements of row 0 are contiguous in memory, followed by all
elements of row 1, etc. In other terms, the array elements at (x,y)
and (x, y+1) are adjacent in memory.
In the Fortran-style layout, array indices start at 1, and
multi-dimensional arrays are laid out in column-major format. That is,
for a two-dimensional array, all elements of column 0 are contiguous in
memory, followed by all elements of column 1, etc. In other terms, the
array elements at (x,y) and (x+1, y) are adjacent in memory.
Each layout style is identified at the type level by the phantom types
Bigarray.c_layout and
Bigarray.fortran_layout respectively.
Supported layouts
The GADT type 'a layout represents one of the two supported memory
layouts: C-style or Fortran-style. Its constructors are re-exported as
values below for backward-compatibility reasons.
type``'a layout`` =
|C_layout:c_layoutlayout
|Fortran_layout:fortran_layoutlayout
valfortran_layout :fortran_layoutlayout
\Generic arrays (of arbitrarily many dimensions)
moduleGenarray:sig...end
Zero-dimensional arrays
moduleArray0:sig...end
Zero-dimensional arrays. The Array0 structure provides operations
similar to those of
Bigarray.Genarray, but specialized to
the case of zero-dimensional arrays that only contain a single scalar
value. Statically knowing the number of dimensions of the array allows
faster operations, and more precise static type-checking.
One-dimensional arrays
moduleArray1:sig...end
One-dimensional arrays. The Array1 structure provides operations
similar to those of
Bigarray.Genarray, but specialized to
the case of one-dimensional arrays. (The
Array2 and
Array3 structures below provide
operations specialized for two- and three-dimensional arrays.)
Statically knowing the number of dimensions of the array allows faster
operations, and more precise static type-checking.
Two-dimensional arrays
moduleArray2:sig...end
Two-dimensional arrays. The Array2 structure provides operations
similar to those of
Bigarray.Genarray, but specialized to
the case of two-dimensional arrays.
Three-dimensional arrays
moduleArray3:sig...end
Three-dimensional arrays. The Array3 structure provides operations
similar to those of
Bigarray.Genarray, but specialized to
the case of three-dimensional arrays.
\Coercions between generic Bigarrays and fixed-dimension Bigarrays
valgenarray_of_array0 : ``('a,'b,'c)``Array0.t->``('a,'b,'c)``Genarray.t
Return the generic Bigarray corresponding to the given zero-dimensional Bigarray.
- since 4.05.0
valgenarray_of_array1 : ``('a,'b,'c)``Array1.t->``('a,'b,'c)``Genarray.t
Return the generic Bigarray corresponding to the given one-dimensional Bigarray.
valgenarray_of_array2 : ``('a,'b,'c)``Array2.t->``('a,'b,'c)``Genarray.t
Return the generic Bigarray corresponding to the given two-dimensional Bigarray.
valgenarray_of_array3 : ``('a,'b,'c)``Array3.t->``('a,'b,'c)``Genarray.t
Return the generic Bigarray corresponding to the given three-dimensional Bigarray.
valarray0_of_genarray : ``('a,'b,'c)``Genarray.t->``('a,'b,'c)``Array0.t
Return the zero-dimensional Bigarray corresponding to the given generic Bigarray.
-
raises Invalid_argument
if the generic Bigarray does not have exactly zero dimension.
-
since 4.05.0
valarray1_of_genarray : ``('a,'b,'c)``Genarray.t->``('a,'b,'c)``Array1.t
Return the one-dimensional Bigarray corresponding to the given generic Bigarray.
-
raises Invalid_argument
if the generic Bigarray does not have exactly one dimension.
valarray2_of_genarray : ``('a,'b,'c)``Genarray.t->``('a,'b,'c)``Array2.t
Return the two-dimensional Bigarray corresponding to the given generic Bigarray.
-
raises Invalid_argument
if the generic Bigarray does not have exactly two dimensions.
valarray3_of_genarray : ``('a,'b,'c)``Genarray.t->``('a,'b,'c)``Array3.t
Return the three-dimensional Bigarray corresponding to the given generic Bigarray.
-
raises Invalid_argument
if the generic Bigarray does not have exactly three dimensions.
Re-shaping Bigarrays
valreshape : ``('a,'b,'c)``Genarray.t->``int array``->``('a,'b,'c)``Genarray.t
reshape b [|d1;...;dN|] converts the Bigarray b to a N-dimensional
array of dimensions d1...dN. The returned array and the original
array b share their data and have the same layout. For instance,
assuming that b is a one-dimensional array of dimension 12,
reshape b [|3;4|] returns a two-dimensional array b' of dimensions 3
and 4. If b has C layout, the element (x,y) of b' corresponds to
the element x * 3 + y of b. If b has Fortran layout, the element
(x,y) of b' corresponds to the element x + (y - 1) * 4 of b. The
returned Bigarray must have exactly the same number of elements as the
original Bigarray b. That is, the product of the dimensions of b
must be equal to i1 * ... * iN. Otherwise, Invalid_argument is
raised.
valreshape_0 : ``('a,'b,'c)``Genarray.t->``('a,'b,'c)``Array0.t
Specialized version of Bigarray.reshape for reshaping
to zero-dimensional arrays.
- since 4.05.0
valreshape_1 : ``('a,'b,'c)``Genarray.t->``int->``('a,'b,'c)``Array1.t
Specialized version of Bigarray.reshape for reshaping
to one-dimensional arrays.
valreshape_2 : ``('a,'b,'c)``Genarray.t->``int->``int->``('a,'b,'c)``Array2.t
Specialized version of Bigarray.reshape for reshaping
to two-dimensional arrays.
valreshape_3 : ``('a,'b,'c)``Genarray.t->``int->``int->``int->``('a,'b,'c)``Array3.t
Specialized version of Bigarray.reshape for reshaping
to three-dimensional arrays.
