Module Stdlib.Seq
Contents
Instructions: Use this module in your project
In the IDE (CLion, Visual Studio Code, Xcode, etc.) you use for your DkSDK project:
Add the following to your project's
dependencies/CMakeLists.txt
:DkSDKProject_DeclareAvailable(ocaml CONSTRAINT "= 4.14.0" FINDLIBS str unix runtime_events threads dynlink) DkSDKProject_MakeAvailable(ocaml)
Add the
Findlib::ocaml
library to any desired targets insrc/*/CMakeLists.txt
:target_link_libraries(YourPackage_YourLibraryName # ... existing libraries, if any ... Findlib::ocaml)
Click your IDE's
Build
button
Not using DkSDK?
FIRST, do one or all of the following:
Run:
opam install ocaml.4.14.0
Edit your
dune-project
and add:(package (name YourExistingPackage) (depends ; ... existing dependenices ... (ocaml (>= 4.14.0))))
Then run:
dune build *.opam # if this fails, run: dune build
Edit your
<package>.opam
file and add:depends: [ # ... existing dependencies ... "ocaml" {>= "4.14.0"} ]
Then run:
opam install . --deps-only
FINALLY, add the library to any desired
(library)
and/or (executable)
targets in your **/dune
files:
(library
(name YourLibrary)
; ... existing library options ...
(libraries
; ... existing libraries ...
))
(executable
(name YourExecutable)
; ... existing executable options ...
(libraries
; ... existing libraries ...
))
type
``'a t`` = ``unit
->
'a
node
A sequence xs
of type 'a t
is a delayed list of elements of type
'a
. Such a sequence is queried by performing a function application
xs()
. This function application returns a node, allowing the caller to
determine whether the sequence is empty or nonempty, and in the latter
case, to obtain its head and tail.
and
``+'a node`` =
|
Nil
|
Cons
of
'a
*
'a
t
A node is either Nil
, which means that the sequence is empty, or
Cons (x, xs)
, which means that x
is the first element of the
sequence and that xs
is the remainder of the sequence.
Consuming sequences
The functions in this section consume their argument, a sequence, either partially or completely:
is_empty
anduncons
consume the sequence down to depth 1. That is, they demand the first argument of the sequence, if there is one.iter
,fold_left
,length
, etc., consume the sequence all the way to its end. They terminate only if the sequence is finite.for_all
,exists
,find
, etc. consume the sequence down to a certain depth, which is a priori unpredictable.
Similarly, among the functions that consume two sequences, one can distinguish two groups:
iter2
andfold_left2
consume both sequences all the way to the end, provided the sequences have the same length.for_all2
,exists2
,equal
,compare
consume the sequences down to a certain depth, which is a priori unpredictable.
The functions that consume two sequences can be applied to two sequences of distinct lengths: in that case, the excess elements in the longer sequence are ignored. (It may be the case that one excess element is demanded, even though this element is not used.)
None of the functions in this section is lazy. These functions are consumers: they force some computation to take place.
val
is_empty :
'a
t
->
bool
is_empty xs
determines whether the sequence xs
is empty.
It is recommended that the sequence xs
be persistent. Indeed,
is_empty xs
demands the head of the sequence xs
, so, if xs
is
ephemeral, it may be the case that xs
cannot be used any more after
this call has taken place.
- since 4.14
If xs
is empty, then uncons xs
is None
.
If xs
is nonempty, then uncons xs
is Some (head xs, tail xs)
, that
is, a pair of the head and tail of the sequence xs
.
This equivalence holds if xs
is persistent. If xs
is ephemeral, then
uncons
must be preferred over separate calls to head
and tail
,
which would cause xs
to be queried twice.
- since 4.14
val
length :
'a
t
->
int
length xs
is the length of the sequence xs
.
The sequence xs
must be finite.
- since 4.14
val
iter : ``(
'a
->
unit)``
->
'a
t
->
unit
iter f xs
invokes f x
successively for every element x
of the
sequence xs
, from left to right.
It terminates only if the sequence xs
is finite.
val
fold_left : ``(
'a
->
'b
->
'a
)``
->
'a
->
'b
t
->
'a
fold_left f _ xs
invokes f _ x
successively for every element x
of
the sequence xs
, from left to right.
An accumulator of type 'a
is threaded through the calls to f
.
It terminates only if the sequence xs
is finite.
val
iteri : ``(``int
->
'a
->
unit)``
->
'a
t
->
unit
iteri f xs
invokes f i x
successively for every element x
located
at index i
in the sequence xs
.
It terminates only if the sequence xs
is finite.
iteri f xs
is equivalent to
iter (fun (i, x) -> f i x) (zip (ints 0) xs)
.
- since 4.14
val
fold_lefti : ``(
'b
->
``int
->
'a
->
'b
)``
->
'b
->
'a
t
->
'b
fold_lefti f _ xs
invokes f _ i x
successively for every element x
located at index i
of the sequence xs
.
An accumulator of type 'b
is threaded through the calls to f
.
It terminates only if the sequence xs
is finite.
fold_lefti f accu xs
is equivalent to
fold_left (fun accu (i, x) -> f accu i x) accu (zip (ints 0) xs)
.
- since 4.14
val
for_all : ``(
'a
->
bool)``
->
'a
t
->
bool
for_all p xs
determines whether all elements x
of the sequence xs
satisfy p x
.
The sequence xs
must be finite.
- since 4.14
val
exists : ``(
'a
->
bool)``
->
'a
t
->
bool
exists xs p
determines whether at least one element x
of the
sequence xs
satisfies p x
.
The sequence xs
must be finite.
- since 4.14
val
find : ``(
'a
->
bool)``
->
'a
t
->
'a
option
find p xs
returns Some x
, where x
is the first element of the
sequence xs
that satisfies p x
, if there is such an element.
It returns None
if there is no such element.
The sequence xs
must be finite.
- since 4.14
val
find_map : ``(
'a
->
'b
option``)``
->
'a
t
->
'b
option
find_map f xs
returns Some y
, where x
is the first element of the
sequence xs
such that f x = Some _
, if there is such an element, and
where y
is defined by f x = Some y
.
It returns None
if there is no such element.
The sequence xs
must be finite.
- since 4.14
iter2 f xs ys
invokes f x y
successively for every pair (x, y)
of
elements drawn synchronously from the sequences xs
and ys
.
If the sequences xs
and ys
have different lengths, then iteration
stops as soon as one sequence is exhausted; the excess elements in the
other sequence are ignored.
Iteration terminates only if at least one of the sequences xs
and ys
is finite.
iter2 f xs ys
is equivalent to
iter (fun (x, y) -> f x y) (zip xs ys)
.
- since 4.14
fold_left2 f _ xs ys
invokes f _ x y
successively for every pair
(x, y)
of elements drawn synchronously from the sequences xs
and
ys
.
An accumulator of type 'a
is threaded through the calls to f
.
If the sequences xs
and ys
have different lengths, then iteration
stops as soon as one sequence is exhausted; the excess elements in the
other sequence are ignored.
Iteration terminates only if at least one of the sequences xs
and ys
is finite.
fold_left2 f accu xs ys
is equivalent to
fold_left (fun accu (x, y) -> f accu x y) (zip xs ys)
.
- since 4.14
for_all2 p xs ys
determines whether all pairs (x, y)
of elements
drawn synchronously from the sequences xs
and ys
satisfy p x y
.
If the sequences xs
and ys
have different lengths, then iteration
stops as soon as one sequence is exhausted; the excess elements in the
other sequence are ignored. In particular, if xs
or ys
is empty,
then for_all2 p xs ys
is true. This is where for_all2
and equal
differ: equal eq xs ys
can be true only if xs
and ys
have the same
length.
At least one of the sequences xs
and ys
must be finite.
for_all2 p xs ys
is equivalent to
for_all (fun b -> b) (map2 p xs ys)
.
- since 4.14
exists2 p xs ys
determines whether some pair (x, y)
of elements
drawn synchronously from the sequences xs
and ys
satisfies p x y
.
If the sequences xs
and ys
have different lengths, then iteration
must stop as soon as one sequence is exhausted; the excess elements in
the other sequence are ignored.
At least one of the sequences xs
and ys
must be finite.
exists2 p xs ys
is equivalent to exists (fun b -> b) (map2 p xs ys)
.
- since 4.14
Provided the function eq
defines an equality on elements,
equal eq xs ys
determines whether the sequences xs
and ys
are
pointwise equal.
At least one of the sequences xs
and ys
must be finite.
- since 4.14
Provided the function cmp
defines a preorder on elements,
compare cmp xs ys
compares the sequences xs
and ys
according to
the lexicographic preorder.
For more details on comparison functions, see
Array.sort
.
At least one of the sequences xs
and ys
must be finite.
- since 4.14
Constructing sequences
The functions in this section are lazy: that is, they return sequences whose elements are computed only when demanded.
val
empty :
'a
t
empty
is the empty sequence. It has no elements. Its length is 0.
val
return :
'a
->
'a
t
return x
is the sequence whose sole element is x
. Its length is 1.
cons x xs
is the sequence that begins with the element x
, followed
with the sequence xs
.
Writing cons (f()) xs
causes the function call f()
to take place
immediately. For this call to be delayed until the sequence is queried,
one must instead write (fun () -> Cons(f(), xs))
.
- since 4.11
val
init : ``int
->
``(``int
->
'a
)``
->
'a
t
init n f
is the sequence f 0; f 1; ...; f (n-1)
.
n
must be nonnegative.
If desired, the infinite sequence f 0; f 1; ...
can be defined as
map f (ints 0)
.
-
raises Invalid_argument
if
n
is negative. -
since 4.14
val
unfold : ``(
'b
->
``(
'a
*
'b
)`` option``)``
->
'b
->
'a
t
unfold
constructs a sequence out of a step function and an initial
state.
If f u
is None
then unfold f u
is the empty sequence. If f u
is
Some (x, u')
then unfold f u
is the nonempty sequence
cons x (unfold f u')
.
For example, unfold (function [] -> None | h :: t -> Some (h, t)) l
is
equivalent to List.to_seq l
.
- since 4.11
val
repeat :
'a
->
'a
t
repeat x
is the infinite sequence where the element x
is repeated
indefinitely.
repeat x
is equivalent to cycle (return x)
.
- since 4.14
val
forever : ``(``unit
->
'a
)``
->
'a
t
forever f
is an infinite sequence where every element is produced (on
demand) by the function call f()
.
For instance, forever Random.bool
is an infinite sequence of random
bits.
forever f
is equivalent to map f (repeat ())
.
- since 4.14
cycle xs
is the infinite sequence that consists of an infinite number
of repetitions of the sequence xs
.
If xs
is an empty sequence, then cycle xs
is empty as well.
Consuming (a prefix of) the sequence cycle xs
once can cause the
sequence xs
to be consumed more than once. Therefore, xs
must be
persistent.
- since 4.14
val
iterate : ``(
'a
->
'a
)``
->
'a
->
'a
t
iterate f x
is the infinite sequence whose elements are x
, f x
,
f (f x)
, and so on.
In other words, it is the orbit of the function f
, starting at x
.
- since 4.14
Transforming sequences
The functions in this section are lazy: that is, they return sequences whose elements are computed only when demanded.
map f xs
is the image of the sequence xs
through the transformation
f
.
If xs
is the sequence x0; x1; ...
then map f xs
is the sequence
f x0; f x1; ...
.
mapi
is analogous to map
, but applies the function f
to an index
and an element.
mapi f xs
is equivalent to map2 f (ints 0) xs
.
- since 4.14
filter p xs
is the sequence of the elements x
of xs
that satisfy
p x
.
In other words, filter p xs
is the sequence xs
, deprived of the
elements x
such that p x
is false.
filter_map f xs
is the sequence of the elements y
such that
f x = Some y
, where x
ranges over xs
.
filter_map f xs
is equivalent to
map Option.get (filter Option.is_some (map f xs))
.
If xs
is a sequence [x0; x1; x2; ...]
, then scan f a0 xs
is a
sequence of accumulators [a0; a1; a2; ...]
where a1
is f a0 x0
,
a2
is f a1 x1
, and so on.
Thus, scan f a0 xs
is conceptually related to fold_left f a0 xs
.
However, instead of performing an eager iteration and immediately
returning the final accumulator, it returns a sequence of accumulators.
For instance, scan (+) 0
transforms a sequence of integers into the
sequence of its partial sums.
If xs
has length n
then scan f a0 xs
has length n+1
.
- since 4.14
take n xs
is the sequence of the first n
elements of xs
.
If xs
has fewer than n
elements, then take n xs
is equivalent to
xs
.
n
must be nonnegative.
-
raises Invalid_argument
if
n
is negative. -
since 4.14
drop n xs
is the sequence xs
, deprived of its first n
elements.
If xs
has fewer than n
elements, then drop n xs
is empty.
n
must be nonnegative.
drop
is lazy: the first n+1
elements of the sequence xs
are
demanded only when the first element of drop n xs
is demanded. For
this reason, drop 1 xs
is not equivalent to tail xs
, which queries
xs
immediately.
-
raises Invalid_argument
if
n
is negative. -
since 4.14
take_while p xs
is the longest prefix of the sequence xs
where every
element x
satisfies p x
.
- since 4.14
drop_while p xs
is the sequence xs
, deprived of the prefix
take_while p xs
.
- since 4.14
Provided the function eq
defines an equality on elements,
group eq xs
is the sequence of the maximal runs of adjacent duplicate
elements of the sequence xs
.
Every element of group eq xs
is a nonempty sequence of equal elements.
The concatenation concat (group eq xs)
is equal to xs
.
Consuming group eq xs
, and consuming the sequences that it contains,
can cause xs
to be consumed more than once. Therefore, xs
must be
persistent.
- since 4.14
The sequence memoize xs
has the same elements as the sequence xs
.
Regardless of whether xs
is ephemeral or persistent, memoize xs
is
persistent: even if it is queried several times, xs
is queried at most
once.
The construction of the sequence memoize xs
internally relies on
suspensions provided by the module Lazy
. These
suspensions are not thread-safe. Therefore, the sequence memoize xs
must not be queried by multiple threads concurrently.
- since 4.14
exception
Forced_twice
This exception is raised when a sequence returned by once
(or a suffix of it) is queried more than once.
- since 4.14
The sequence once xs
has the same elements as the sequence xs
.
Regardless of whether xs
is ephemeral or persistent, once xs
is an
ephemeral sequence: it can be queried at most once. If it (or a suffix
of it) is queried more than once, then the exception Forced_twice
is
raised. This can be useful, while debugging or testing, to ensure that a
sequence is consumed at most once.
-
raises Forced_twice
if
once xs
, or a suffix of it, is queried more than once. -
since 4.14
If xss
is a matrix (a sequence of rows), then transpose xss
is the
sequence of the columns of the matrix xss
.
The rows of the matrix xss
are not required to have the same length.
The matrix xss
is not required to be finite (in either direction).
The matrix xss
must be persistent.
- since 4.14
Combining sequences
append xs ys
is the concatenation of the sequences xs
and ys
.
Its elements are the elements of xs
, followed by the elements of ys
.
- since 4.11
If xss
is a sequence of sequences, then concat xss
is its
concatenation.
If xss
is the sequence xs0; xs1; ...
then concat xss
is the
sequence xs0 @ xs1 @ ...
.
- since 4.13
concat_map f xs
is equivalent to concat (map f xs)
.
concat_map
is an alias for flat_map
.
- since 4.13
zip xs ys
is the sequence of pairs (x, y)
drawn synchronously from
the sequences xs
and ys
.
If the sequences xs
and ys
have different lengths, then the sequence
ends as soon as one sequence is exhausted; the excess elements in the
other sequence are ignored.
zip xs ys
is equivalent to map2 (fun a b -> (a, b)) xs ys
.
- since 4.14
map2 f xs ys
is the sequence of the elements f x y
, where the pairs
(x, y)
are drawn synchronously from the sequences xs
and ys
.
If the sequences xs
and ys
have different lengths, then the sequence
ends as soon as one sequence is exhausted; the excess elements in the
other sequence are ignored.
map2 f xs ys
is equivalent to map (fun (x, y) -> f x y) (zip xs ys)
.
- since 4.14
interleave xs ys
is the sequence that begins with the first element of
xs
, continues with the first element of ys
, and so on.
When one of the sequences xs
and ys
is exhausted, interleave xs ys
continues with the rest of the other sequence.
- since 4.14
If the sequences xs
and ys
are sorted according to the total
preorder cmp
, then sorted_merge cmp xs ys
is the sorted sequence
obtained by merging the sequences xs
and ys
.
For more details on comparison functions, see
Array.sort
.
- since 4.14
product xs ys
is the Cartesian product of the sequences xs
and ys
.
For every element x
of xs
and for every element y
of ys
, the
pair (x, y)
appears once as an element of product xs ys
.
The order in which the pairs appear is unspecified.
The sequences xs
and ys
are not required to be finite.
The sequences xs
and ys
must be persistent.
- since 4.14
The sequence map_product f xs ys
is the image through f
of the
Cartesian product of the sequences xs
and ys
.
For every element x
of xs
and for every element y
of ys
, the
element f x y
appears once as an element of map_product f xs ys
.
The order in which these elements appear is unspecified.
The sequences xs
and ys
are not required to be finite.
The sequences xs
and ys
must be persistent.
map_product f xs ys
is equivalent to
map (fun (x, y) -> f x y) (product xs ys)
.
- since 4.14
Splitting a sequence into two sequences
unzip
transforms a sequence of pairs into a pair of sequences.
unzip xs
is equivalent to (map fst xs, map snd xs)
.
Querying either of the sequences returned by unzip xs
causes xs
to
be queried. Therefore, querying both of them causes xs
to be queried
twice. Thus, xs
must be persistent and cheap. If that is not the case,
use unzip (memoize xs)
.
- since 4.14
partition_map f xs
returns a pair of sequences (ys, zs)
, where:
-
ys
is the sequence of the elementsy
such thatf x = Left y
, wherex
ranges overxs
; -
zs
is the sequence of the elementsz
such thatf x = Right z
, wherex
ranges overxs
.
partition_map f xs
is equivalent to a pair of
filter_map Either.find_left (map f xs)
and
filter_map Either.find_right (map f xs)
.
Querying either of the sequences returned by partition_map f xs
causes
xs
to be queried. Therefore, querying both of them causes xs
to be
queried twice. Thus, xs
must be persistent and cheap. If that is not
the case, use partition_map f (memoize xs)
.
- since 4.14
partition p xs
returns a pair of the subsequence of the elements of
xs
that satisfy p
and the subsequence of the elements of xs
that
do not satisfy p
.
partition p xs
is equivalent to
filter p xs, filter (fun x -> not (p x)) xs
.
Consuming both of the sequences returned by partition p xs
causes xs
to be consumed twice and causes the function f
to be applied twice to
each element of the list. Therefore, f
should be pure and cheap.
Furthermore, xs
should be persistent and cheap. If that is not the
case, use partition p (memoize xs)
.
- since 4.14
\Converting between sequences and dispensers
A dispenser is a representation of a sequence as a function of type
unit -> 'a option
. Every time this function is invoked, it returns the
next element of the sequence. When there are no more elements, it
returns None
. A dispenser has mutable internal state, therefore is
ephemeral: the sequence that it represents can be consumed at most once.
val
of_dispenser : ``(``unit
->
'a
option``)``
->
'a
t
of_dispenser it
is the sequence of the elements produced by the
dispenser it
. It is an ephemeral sequence: it can be consumed at most
once. If a persistent sequence is needed, use
memoize (of_dispenser it)
.
- since 4.14
val
to_dispenser :
'a
t
->
``unit
->
'a
option
to_dispenser xs
is a fresh dispenser on the sequence xs
.
This dispenser has mutable internal state, which is not protected by a lock; so, it must not be used by several threads concurrently.
- since 4.14
Sequences of integers
val
ints : ``int
->
``int
t
ints i
is the infinite sequence of the integers beginning at i
and
counting up.
- since 4.14